&7 — A AT

Minefield Mahjong

a 2-player network game
Pawet Marczewski (presenting), Jan Szejko and others

Kaiji (11 2*) by Nobuyuki Fukumoto (Yg4%(f17)

INTRODUCTION mT http://pwmarcz.pl/minefield/ TESTING

On the server side, we used the On client side, unit tests are
Python unittest library. handled by QUnit.

Server communication is
e o e any o) o mocked.

test_choose_tenpai (bot.TenpaiChoiceTestCase) ... SKIP: too slow!
test_save room (database.DatabaseTest) ... ok

test_serialize room (database.SerializationTest) ... ok
test furiten (game.GameTestCase) ... ok Minefield Mahjong
test _hand time limit (game.GameTestCase) ... ok

test tiles_outside initial (game.GameTestCase) ... ok [C] Hide passed tests [C] Check for Globals [C] No try-catch Module: <AllModules > ~

test win (game.GameTestCase) ... ok)

test_replay after_connect (room.RoomTest) ... ok el e] 0 WS 1) Seepul sl ot
Tests co 323 milliseconds.
1 ed, 0 failed

Minefield Mahjong is a game introduced

by Nobuyuki Fukumoto in a manga Kaiji >
(74711 3). It's a two-player game based =

on regular Riichi Mahjong. The objective

Is to make the opponent deal into your

hand. Your hand has to be worth at least mangan (
(The full rules are described on the game website.)

test_send and crash (room.RoomTest) ... ok
test_chitoitsu (rules.FuTestCase) ... ok
test waits (rules.FuTestCase) ... ok
test find pair (rules.RulesTestCase) ... ok
test find pair dupes (rules.RulesTestCase) ... ok
test_is_all pairs (rules.RulesTestCase) ... ok
test_chinroto (rules.YakuTestCase) ... ok 4. phas : display clock while selecting hand (0, 7, 7)
test _pinfu (rules.YakuTestCase) ... ok
test_ryuuiiso (rules.YakuTestCase) ... ok
test sanshoku (rules.YakuTestCase) ... ok
test suuanko (rules.YakuTestCase) ... ok 7 clock while dealing (0, 9, 9)
test_toitoi (rules.YakuTestCase) ... ok
test_tsuuiiso (rules.YakuTestCase) ... ok
test yaku (rules.YakuTestCase) ... ok 9 riichi stick after first discard (0, 5, 9)
test_abort (server.ServerTest) ... ok 10. pha deal when not allowed (0, 3, 3)

.. ok
test join failed (server.ServerTest) ... ok
test_new_game (server.ServerTest) ... ok
test _new_game_disconnect (server.ServerTest) ... 1 rt game (0, 3, 3)

phase one: auto-submit hand on timeout (0, 5, 5)

=[w|&[x[x [Km0 0 [49 Ron!
BEERRRARCH L] 3E
F ﬂmﬂ You won!

X | A
;ﬁ; ﬁ phas : deal when allowed (0, 9, 9)

1. You are given 34 tiles oSt 1o Dorm:

2. Create a hand from them = X%

Yaku:
= || 2 N CEEREIEI
88 (000 HRH i~d)i L | L ‘P <> s ' @8 OJF::cl:\an
25 |oco gt ! AN L B e|a e dora 1
@9 |ooe A q
BERNE AP] oy | ey B (gap|BBE D | e \’ N Score: 1500 points (haneman)
y @ ST | ST 5 > o
* AR

3. Deal from the rest of your tiles 4. Win!

deal on timeout (0, 7, 7)

isplay opponent discards (0, 3, 3)

game by draw (0, 3, 3)

game (0, 12, 12)

Ran 58 tests in 0.130s 15. pha game with yakuman (0, 5, 5)

ARCHITECTURE PROTOCOL

Minefield Mahjong is a web application using WebSocket for
server communication.

client: hello, {"nick": "Akagi"} PlLayer joins the game.
server: phase_one, Server replies with
{"tiles": ["M2","M2","M5"...], tiles player can use, as
"dora_ind": "P3", well as bonus tile (dora)
"you": 0, "east": 1} and player number.
client: hand, PlLayer sends the hand
{"hand": ["P3", "P3", "P3"...]} selected from the tiles.
server: phase_two Both players are ready.
server: your_move It's our player's turn.
client: discard, {"tile": "M2"} Player discards a tile.
server: discarded, Opponent's discard
{"player": 1, "tile": "M5"} 1S announced.

|
& | & | &,
éy| 1
server: ron, Our player won! The
{"player": 0, interface will display
2n | 2| 2w @@ @@ @@ ﬁ E "yaku": ["tanyao"...], ... e winnin and an
* _)ﬁ_\. ::L\. j}.\. H H H ﬁﬁﬁ ﬁﬁﬁ e s | :Zor'e to bgtz pfayeis.
&4 4|4 eeleeee|l i I I|55E 588

Page
(HTML,
SCSS, SVG)

< |2
2 I N
8|8,

WebSocket .
Database Cl'e"t_
(SQLite) (JavaScript)

PROJECT INFORMATION

RULES ENGINE PERSISTENCE

Developers: In development:
- rules engine, server, client: about a year (on and off)
Pawet Marczewski (pwmarcz@gmail.com)
- rules engine, bot: Size:
Jan Szejko (janek37@gmail.com) - 2200 lines of Python
- various contributions: - 1000 lines of JavaScript
Krzysztof Gogolewski - 300 Git commits
Aleksandra Malinowska
Tomasz "Kos" Wesotowski Tile graphics attribution:
- http://blog.kanojo.de/
Technologies used: (game, poster)
- client: SCSS, SVG, JavaScript, socket.io - http://martinpersson.org/
- server: Python 2.7, gevent, sqlite (poster)
- server infrastructure:
nginx, supervisord, ansible, Sentry

We use a simple string representation for tiles: We wanted Minefield to handle client reconnections The games persist on the server side as well, so
as well as server restarts. This proved challenging that the server can be safely restarted. This is
A B B because of the stateful nature of a WebSocket- done by saving the state of the games to a SQLite
%3 ‘? based server. database.

X7,),:ij To allow a client to reconnect, the server simply As a result, we can safely update code to a
remembers all the messages it sent to the client. live server. The server process will save games
When the client reconnects, the server replays to a database, then restart, allowing the players

_ S — all the messages from the beginning, so that the to reconnect and carry on with their games.
/ yield (I8 %eod * * - client can reach the same state. This is less

)T yield (%, BHOE effective than replaying just the latest messages,

\ but simpler to implement.

For decomposing the hand, Python generators are very useful:

begin_group(

